Comparing Different Machine Learning Approaches for Disfluency Structure Detection in a Corpus of University Lectures∗

نویسندگان

  • Henrique Medeiros
  • Fernando Batista
  • Helena Moniz
  • Isabel Trancoso
  • Luis Nunes
چکیده

This paper presents a number of experiments focusing on assessing the performance of different machine learning methods on the identification of disfluencies and their distinct structural regions over speech data. Several machine learning methods have been applied, namely Naive Bayes, Logistic Regression, Classification and Regression Trees (CARTs), J48 and Multilayer Perceptron. Our experiments show that CARTs outperform the other methods on the identification of the distinct structural disfluent regions. Reported experiments are based on audio segmentation and prosodic features, calculated from a corpus of university lectures in European Portuguese, containing about 32h of speech and about 7.7% of disfluencies. The set of features automatically extracted from the forced alignment corpus proved to be discriminant of the regions contained in the production of a disfluency. This work shows that using fully automatic prosodic features, disfluency structural regions can be reliably identified using CARTs, where the best results achieved correspond to 81.5% precision, 27.6% recall, and 41.2% F-measure. The best results concern the detection of the interregnum, followed by the detection of the interruption point. 1998 ACM Subject Classification I.2.7 Natural Language Processing

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Disfluency detection based on prosodic features for university lectures

This paper focuses on the identification of disfluent sequences and their distinct structural regions, based on acoustic and prosodic features. Reported experiments are based on a corpus of university lectures in European Portuguese, with roughly 32h, and a relatively high percentage of disfluencies (7.6%). The set of features automatically extracted from the corpus proved to be discriminant of...

متن کامل

Comparing Lexical Bundles in Hard Science Lectures; A Case of Native and Non-Native University Lecturers

Researchers stated that learning and applying certain set of lexical bundles of native lecturers by non-native lecturers would help students improve their proficiency through incidental vocabulary input. The present study shed light on the lexical bundles in hard science lectures used by Native and Non-native lecturers in international universities with the main purpose of analyzing the structu...

متن کامل

Domain-specific classification methods for disfluency detection

Speech disfluencies are very common in our everyday life and considerably affect NLP systems, which makes systems that can detect or even repair them highly desirable. Previous research achieved good results in the field of disfluency detection but only in subsets of the disfluency types. The aim of this study was to develop a technology that is able to cope with a broad field of disfluency typ...

متن کامل

Disfluency Detection across Domains

This paper focuses on disfluency detection across distinct domains using a large set of openSMILE features, derived from the Interspeech 2013 Paralinguistic challenge. Amongst different machine learning methods being applied, SVMs achieved the best performance. Feature selection experiments revealed that the dimensionality of the larger set of features can be further reduced at the cost of a sm...

متن کامل

Protein Secondary Structure Prediction: a Literature Review with Focus on Machine Learning Approaches

DNA sequence, containing all genetic traits is not a functional entity. Instead, it transfers to protein sequences by transcription and translation processes. This protein sequence takes on a 3D structure later, which is a functional unit and can manage biological interactions using the information encoded in DNA. Every life process one can figure is undertaken by proteins with specific functio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013